Edge states and optical transition energies in carbon nanoribbons.

نویسندگان

  • J Jiang
  • W Lu
  • J Bernholc
چکیده

The edge states and optical transition energies in carbon nanoribbons are investigated with density-functional calculations. While the ground state of zigzag ribbons is spin polarized, defects at the edges destroy spin polarization and lead to a nonmagnetic ground state. Scanning tunneling spectroscopy will thus show different features depending on edge quality. Optical transition energies in nanoribbons Eii are strongly affected by the edges and confinement, which introduce a term inversely proportional to their width. After removing that term, the scaling of Eii is quantitatively similar to that in carbon nanotubes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon K edge structures of molecular crystals from first-principles: A comparison between phenanthrene and anthracene

By means of ab-initio calculations on the basis of the FPLAPW method, we compared the energy loss near edge structure (ELNES) of carbon K edges in crystalline phenanthrene and its isomer, anthracene. In these two organic compounds, different non-equivalent carbon atoms can result in distinct K edge spectra due to the different carbon-carbon bond lengths, as a characteristic behavior of the mole...

متن کامل

Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons.

First-principle density functional theory calculations with quasiparticle corrections and many body effects are performed to study the electronic and optical properties of armchair graphene nanoribbons (AGNRs) with variant edges saturated by hydrogen atoms. The "effective width" method associated with the reported AGNR family effect is introduced to understand the electronic structures. The met...

متن کامل

Unzipped and Defective Nanotubes: Rolling up Graphene and Unrolling Tubes

The properties of carbon nanotubes can be dramatically altered by the presence of defects. In this work we address the properties of two different kinds of defective nanotubes: junctions of achiral tubes with topological defects and partially unzipped carbon nanotubes. In particular, we begin by focussing on the interface states in carbon nanotube junctions between achiral tubes. We show that t...

متن کامل

Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field

Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...

متن کامل

Surface solitons at the edges of graphene nanoribbons

We demonstrate numerically that armchair graphene nanoribbons can support vibrational localized states in the form of surface solitons. Such localized states appear through self-localization of the vibrational energy along the edge of the graphene nanoribbon, and they decay rapidly inside the structure. We find five types of such solitary waves including in-plane and out-of-plane edge breathers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 101 24  شماره 

صفحات  -

تاریخ انتشار 2008